Source code for cyto_dl.nn.losses.gan_loss

import torch
from torch import nn


[docs]class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__( self, gan_mode: str = "vanilla", target_real_label: float = 1.0, target_fake_label: float = 0.0, ): """Initialize the GANLoss class. Parameters ---------- gan_mode:str='vanilla' Type of GAN objective `vanilla`, `lsgan`, and `wgangp` are supported. target_real_label:float=1.0 label for a real image target_fake_label:float=0.0 label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super().__init__() self.register_buffer("real_label", torch.tensor(target_real_label)) self.register_buffer("fake_label", torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == "lsgan": self.loss = nn.MSELoss() elif gan_mode == "vanilla": self.loss = nn.BCEWithLogitsLoss() elif gan_mode == "wgangp": self.loss = None else: raise NotImplementedError("gan mode %s not implemented" % gan_mode)
[docs] def get_target_tensor(self, prediction: torch.Tensor, target_is_real: bool): """Create label tensors with the same size as the input. Parameters ---------- prediction:torch.Tensor Prediction output from a discriminator target_is_real:bool if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of input """ target_tensor = self.real_label if target_is_real else self.fake_label target_tensor = target_tensor.expand_as(prediction) # noqa: FURB184 return target_tensor
def __call__(self, prediction: torch.Tensor, target_is_real: bool): """Calculate loss given Discriminator's output and grount truth labels. Parameters ---------- prediction:torch.Tensor Prediction output from a discriminator target_is_real:bool if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ("lsgan", "vanilla"): target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == "wgangp": if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss
# modified from https://github.com/MMV-Lab/mmv_im2im/blob/1b92bf4ab27cafe2608aef071f366741df3b58d4/mmv_im2im/utils/gan_losses.py
[docs]class Pix2PixHD(nn.Module): def __init__(self, scales, loss_weights={"GAN": 1, "FM": 10}): super().__init__() self.scales = scales self.gan_loss = GANLoss("vanilla") self.feature_matching_loss = torch.nn.L1Loss() self.weights = loss_weights
[docs] def get_feature_matching_loss(self, features): loss_fm = 0 for scale in range(self.scales): for real_feat, pred_feat in zip(features["real"][scale], features["pred"][scale]): loss_fm += self.feature_matching_loss(real_feat.detach(), pred_feat) return loss_fm / self.scales
[docs] def get_gan_loss(self, features, feature_type): loss = 0 for scale in range(self.scales): loss += self.gan_loss(features[scale][-1], feature_type == "real") return loss / self.scales
def __call__(self, features, step): if step == "discriminator": return ( self.get_gan_loss(features["real"], "real") + self.get_gan_loss(features["pred"], "pred") ) * 0.5 elif step == "generator": # tell discriminator these are real features loss_G = self.get_gan_loss(features["pred"], "real") loss_feature_matching = self.get_feature_matching_loss(features) return loss_G * self.weights["GAN"] + loss_feature_matching * self.weights["FM"]