Source code for cyto_dl.models.vae.base_vae

import inspect
from typing import Dict, Optional, Sequence

import torch
import torch.nn as nn
from omegaconf import DictConfig
from torch.nn.modules.loss import _Loss as Loss
from torchmetrics import MeanMetric

from cyto_dl.models.base_model import BaseModel

from .priors import IdentityPrior, IsotropicGaussianPrior, Prior


[docs]class BaseVAE(BaseModel): def __init__( self, *, encoder: nn.Module, decoder: nn.Module, latent_dim: int, x_label: str, beta: float = 1.0, id_label: Optional[str] = None, reconstruction_loss: Loss = nn.MSELoss(reduction="none"), prior: Optional[Sequence[Prior]] = None, decoder_latent_parts: Optional[Dict[str, Sequence[str]]] = None, disable_metrics: Optional[bool] = False, metric_keys: Optional[list] = None, **base_kwargs, ): """Instantiate a basic VAE model. Parameters ---------- encoder: nn.Module Encoder network decoder: nn.Module Decoder network x_label: Optional[str] = None id_label: Optional[str] = None beta: float = 1.0 Beta parameter - the weight of the KLD term in the loss function reconstruction_loss: Loss Loss to be used for reconstruction. Can be a PyTorch loss or a class that respects the same interface, i.e. subclasses torch.nn.modules._Loss prior: Optional[Sequence[AbstractPrior]] List of prior specifications to use for latent space decoder_latent_parts: Optional[Dict[str, Sequence[str]]] = None Dictionary that specifies for each output part's decoer, what latent keys it depends on **base_kwargs: Additional arguments passed to BaseModel """ if not isinstance(reconstruction_loss, (dict, DictConfig)): assert x_label is not None recon_parts = [x_label] else: recon_parts = reconstruction_loss.keys() if not isinstance(prior, (dict, DictConfig)): prior = {"embedding": prior} if disable_metrics: _DEFAULT_METRICS = { "train/loss": MeanMetric(), "val/loss": MeanMetric(), "test/loss": MeanMetric(), } elif metric_keys: _DEFAULT_METRICS = {} for key in metric_keys: _DEFAULT_METRICS.update({key: MeanMetric()}) else: _DEFAULT_METRICS = { "train/loss": MeanMetric(), "val/loss": MeanMetric(), "test/loss": MeanMetric(), "train/loss/total_reconstruction": MeanMetric(), "val/loss/total_reconstruction": MeanMetric(), "test/loss/total_reconstruction": MeanMetric(), "train/loss/total_kld": MeanMetric(), "val/loss/total_kld": MeanMetric(), "test/loss/total_kld": MeanMetric(), } for part in prior.keys(): _DEFAULT_METRICS.update( { f"train/loss/kld_{part}": MeanMetric(), f"val/loss/kld_{part}": MeanMetric(), f"test/loss/kld_{part}": MeanMetric(), } ) for part in recon_parts: _DEFAULT_METRICS.update( { f"train/loss/reconstruction_{part}": MeanMetric(), f"val/loss/reconstruction_{part}": MeanMetric(), f"test/loss/reconstruction_{part}": MeanMetric(), } ) metrics = base_kwargs.pop("metrics", _DEFAULT_METRICS) super().__init__(metrics=metrics, **base_kwargs) for key in prior.keys(): if prior[key] is None or isinstance(prior[key], str): if prior[key] == "gaussian": prior[key] = IsotropicGaussianPrior(dimensionality=latent_dim) else: prior[key] = IdentityPrior(dimensionality=latent_dim) # elif not isinstance(prior[key], Prior): # raise ValueError( # f"Expected prior to either be one of ('gaussian', 'identity', None)" # f"or an object of type `Prior`. Got: {type(prior)}" # ) self.prior = nn.ModuleDict(prior) self.reconstruction_loss = reconstruction_loss if not isinstance(encoder, (dict, DictConfig)): encoder = {"embedding": encoder} self.encoder = nn.ModuleDict(encoder) if not isinstance(decoder, (dict, DictConfig)): assert x_label is not None decoder = {x_label: decoder} self.decoder = nn.ModuleDict(decoder) if not isinstance(reconstruction_loss, (dict, DictConfig)): assert x_label is not None reconstruction_loss = {x_label: reconstruction_loss} self.reconstruction_loss = nn.ModuleDict(reconstruction_loss) self.beta = beta self.latent_dim = latent_dim if decoder_latent_parts is None: self.decoder_latent_parts = {key: self.prior.keys() for key in self.decoder.keys()} else: self.decoder_latent_parts = decoder_latent_parts for key in self.decoder.keys(): if key not in self.decoder_latent_parts: raise KeyError( f"Decoder with key '{key}' doesn't have an entry in " f"`decoder_latent_parts`, so we don't know which " "latent parts it uses." ) self.encoder_args = {} for part, enc in self.encoder.items(): if enc is not None: self.encoder_args[part] = inspect.getfullargspec(enc.forward).args
[docs] def calculate_rcl(self, x, xhat, input_key, target_key=None): if not target_key: target_key = input_key rcl_per_input_dimension = self.reconstruction_loss[input_key]( x[target_key], xhat[input_key] ) return rcl_per_input_dimension
[docs] def calculate_rcl_dict(self, x, xhat, z): rcl_per_input_dimension = {} rcl_reduced = {} for key in xhat.keys(): rcl_per_input_dimension[key] = self.reconstruction_loss[key](xhat[key], x[key]) if len(rcl_per_input_dimension[key].shape) > 0: rcl = ( rcl_per_input_dimension[key] # flatten .view(rcl_per_input_dimension[key].shape[0], -1) # and sum across each batch element's dimensions .sum(dim=1) ) rcl_reduced[key] = rcl.mean() else: rcl_reduced[key] = rcl_per_input_dimension[key] return rcl_reduced
[docs] def calculate_elbo(self, x, xhat, z): rcl_reduced = self.calculate_rcl_dict(x, xhat, z) kld_per_part = { part: prior(z[part], mode="kl", reduction="none") for part, prior in self.prior.items() } kld_per_part_summed = {part: kl.sum(dim=-1).mean() for part, kl in kld_per_part.items()} total_kld = sum(kld_per_part_summed.values()) total_recon = sum(rcl_reduced.values()) return ( total_recon + self.beta * total_kld, total_recon, rcl_reduced, total_kld, kld_per_part, )
[docs] def sample_z(self, z_parts_params, inference=False): z = {} for part, part_params in z_parts_params.items(): if part in self.prior: z[part] = self.prior[part](part_params, mode="sample", inference=inference) else: # if prior for this part isn't in the dict, assume dirac prior # i.e. just return the params, and it won't contribute to kl z[part] = part_params return z
[docs] def encode(self, batch, **kwargs): ret_dict = {} for part, encoder in self.encoder.items(): this_ret = encoder( batch[part], **{k: v for k, v in kwargs.items() if k in self.encoder_args[part]}, ) if isinstance(this_ret, dict): # deal with multiple outputs for an encoder for key in this_ret.keys(): ret_dict[key] = this_ret[key] else: ret_dict[part] = this_ret return ret_dict
[docs] def decode(self, z): # for each decoder key, get the latent parts it uses from `self.decoder_latent_keys` # and pass them as *args to that decoder's forward method return { part: decoder(*[z[key] for key in self.decoder.keys()]) for part, decoder in self.decoder.items() }
[docs] def forward(self, batch, decode=False, inference=True, return_params=False, **kwargs): is_inference = inference or not self.training z_params = self.encode(batch, **kwargs) z = self.sample_z(z_params, inference=inference) if not decode: return z xhat = self.decode(z) if return_params: return xhat, z, z_params return xhat, z
[docs] def model_step(self, stage, batch, batch_idx): ( xhat, z, z_params, ) = self.forward(batch, decode=True, inference=False, return_params=True) ( loss, rec_loss, rec_loss_per_part, kld_loss, kld_per_part, ) = self.calculate_elbo(batch, xhat, z_params) loss = { "loss": loss, "total_kld": kld_loss.detach(), "total_reconstruction": rec_loss.detach(), } for part, recon_part in rec_loss_per_part.items(): loss[f"reconstruction_{part}"] = recon_part.detach() preds = {} for part, z_part in z.items(): if not isinstance(z_part, dict): preds[f"z/{part}"] = z_part.detach() preds[f"z_params/{part}"] = z_params[part].detach() for part in self.prior: loss[f"kld_{part}"] = kld_per_part[part].detach() if self.hparams.id_label is not None: if self.hparams.id_label in batch: ids = batch[self.hparams.id_label].detach() preds.update({self.hparams.id_label: ids, "id": ids}) return loss, preds, None