Source code for cyto_dl.models.im2im.utils.instance_seg

from typing import Dict, List, Optional, Sequence, Union

import edt
import numpy as np
import torch

# implements a nan-ignoring convolution
from astropy.convolution import convolve
from monai.data import MetaTensor
from monai.losses import TverskyLoss
from monai.transforms import Flip, RandomizableTransform, Transform
from omegaconf import ListConfig
from scipy.ndimage import binary_dilation, binary_erosion, find_objects, label
from scipy.spatial import KDTree
from skimage.filters import gaussian
from skimage.morphology import ball, disk, remove_small_objects, skeletonize
from skimage.segmentation import find_boundaries, relabel_sequential
from tqdm import tqdm

from cyto_dl.nn.losses.loss_wrapper import CMAP_loss


[docs]def pad_slice(s, padding, constraints): # pad slice by padding subject to image size constraints new_slice = [] for slice_part, c in zip(s, constraints): start = max(0, slice_part.start - padding) stop = min(c, slice_part.stop + padding) new_slice.append(slice(start, stop, None)) return tuple(new_slice)
[docs]class InstanceSegPreprocessd(Transform): def __init__( self, label_keys: Union[Sequence[str], str], kernel_size: int = 3, thin: int = 5, dim: int = 3, anisotropy: float = 2.6, keep_largest: bool = True, allow_missing_keys: bool = False, ): """ Parameters ---------- label_keys: Union[Sequence[str], str] Keys of instance segmentations in input dictionary to convert to Instance Seg ground truth images. kernel_size: int=3 Size of kernel for gaussian smoothing of flows thin: int=5 Amount to thin to create psuedo-skeleton dim:int=3 Spatial dimension of images anisotropy:float=2.6 Anisotropy of images keep_largest:bool=True Whether to keep only the largest connected component of each label allow_missing_keys:bool=False Whether to raise error if key in `label_keys` is not present """ super().__init__() self.label_keys = ( label_keys if isinstance(label_keys, (list, ListConfig)) else [label_keys] ) self.dim = dim self.allow_missing_keys = allow_missing_keys self.kernel_size = kernel_size self.anisotropy = np.array([anisotropy, 1, 1]) if dim == 3 else np.array([1, 1]) self.thin = thin self.keep_largest = keep_largest
[docs] def shrink(self, im): """Topology-preserving thinning of a binary image.""" skel = np.zeros_like(im) regions = find_objects(im) for lab, coords in enumerate(regions, start=1): if coords is None: continue # add 1 pix boundary to prevent "ball + stick" artifacts coords = pad_slice(coords, 2, im.shape) skel[coords] += self.topology_preserving_thinning(im[coords] == lab) return skel * im # relabel shrunk object
[docs] def skeleton_tall(self, img, max_label): """Skeletonize 3d image with increased thickness in z.""" if max_label == 0 or self.dim == 2: return skeletonize(img) tall_skeleton = np.stack([skeletonize(np.max(img, 0))] * img.shape[0]) return tall_skeleton
[docs] def label_2d(self, img): """ dim = 2: return labeled image dim = 3: label each z slice separately """ if self.dim == 2: out, _ = label(img) return out out = np.zeros_like(img, dtype=np.int16) for z in range(img.shape[0]): lab, _ = label(img[z]) lab[lab > 0] += np.max(out) out[z] = lab return out
[docs] def topology_preserving_thinning(self, bw, min_size=100): """Topology-preserving thinning of a binary image. Use skeleton to bridge gaps created by erosion. """ # NOTE - keeping every self.thin slices does not maintain self.anisotropy ( keeping every self.anisotropy slices would). In practice, keeping every self.anisotropy slices is slower and favors z-gradients over xy. selem = ball(self.thin)[:: self.thin] if self.dim == 3 else disk(self.thin) eroded = binary_erosion(bw, selem, border_value=1) # only want to preserve connections between significantly-sized objects eroded = remove_small_objects(eroded, min_size) eroded, max_label = label(eroded) # single object is preserved by erosion if max_label == 1: return eroded skel = self.skeleton_tall(bw, max_label) if max_label == 0: return skel # if erosion separates object into multiple pieces, use skeleton to bridge those pieces into single object # 1. isolate pieces of skeleton that are outside of eroded objects (i.e. could bridge between objects) skel[eroded != 0] = 0 skel = self.label_2d(skel) for i in np.unique(skel)[1:]: # 3. find number of non-background objects overlapped by piece of skeleton, add back in pieces that overlap multiple obj dilation_selem = np.expand_dims(disk(3), 0) dilated_skel = binary_dilation(skel == i, dilation_selem) n_obj_masked = np.sum(np.unique(eroded[dilated_skel]) > 0) if n_obj_masked > 1: eroded += dilated_skel # make sure dilated skeleton is within object bounds by 1 pix so vectors can point to it one_erode = binary_erosion(bw, border_value=1) eroded[one_erode == 0] = 0 return eroded > 0
def _get_point_embeddings(self, object_points, skeleton_points): """Finds closest skeleton point to each object point using KDTree.""" tree = KDTree(skeleton_points) dist, idx = tree.query(object_points) return torch.from_numpy(tree.data[idx]).T.float()
[docs] def smooth_embedding(self, embedding): """Smooths embedding by convolving with a mean kernel, excluding non-object pixels.""" kernel = np.ones([self.kernel_size] * self.dim) / (self.kernel_size**self.dim) embedding[embedding == 0] = np.nan for i in range(embedding.shape[0]): conv_embed = convolve(embedding[i], kernel, boundary="extend") conv_embed[np.isnan(embedding[i])] = 0 embedding[i] = conv_embed return embedding
[docs] def embed_from_skel(self, skel: np.ndarray, iseg: np.ndarray): """Find per-pixel embedding vector to closest point on skeleton.""" iseg[skel != 0] = 0 # 3ZYX vector field for 3d, 2YX for 2d embed = torch.zeros([self.dim] + [iseg.shape[i] for i in range(self.dim)]) skel_boundary = find_boundaries(skel, mode="inner") * skel # propagate labels regions = find_objects(iseg) for lab, coords in enumerate(regions, start=1): if coords is None: continue seg_crop = iseg[coords] # find objects + np.where is much faster than just np.where on full fov object_points = np.asarray(np.where(seg_crop == lab)) skel_points = np.asarray(np.where(skel_boundary[coords] == lab)) if skel_points[0].size == 0: continue # distances should take into account z anisotropy and be in n_points x n_dims array point_embeddings = self._get_point_embeddings( object_points.T * self.anisotropy, skel_points.T * self.anisotropy ) # smooth embeddings per-object to avoid smearing of boundaries across objects crop_embedding = np.zeros((self.dim, *seg_crop.shape)) if len(object_points) == 2: crop_embedding[:, object_points[0], object_points[1]] = point_embeddings elif len(object_points) == 3: crop_embedding[ :, object_points[0], object_points[1], object_points[2] ] = point_embeddings crop_embedding = torch.from_numpy(self.smooth_embedding(crop_embedding)) # turn spatial embedding into offset vector by subtracting pixel coordinates anisotropic_shape = torch.as_tensor(seg_crop.shape).mul( torch.from_numpy(self.anisotropy) ) coordinates = torch.stack( torch.meshgrid( *[ torch.linspace(0, anisotropic_shape[i] - 1, seg_crop.shape[i]) for i in range(self.dim) ] ) ) crop_embedding[crop_embedding != 0] -= coordinates[crop_embedding != 0] # pad coords with channel dimension embed[(slice(None),) + coords] += crop_embedding return embed
def _get_object_contacts(self, img): """Find pixels that separate touching objects.""" regions = find_objects(img.astype(int)) outer_bounds = np.zeros_like(img) for lab, coords in enumerate(regions, start=1): bounds = find_boundaries(img[coords] == lab) outer_bounds[coords] += bounds outer_bounds = outer_bounds > 1 return (outer_bounds * 10).squeeze() def _get_cmap(self, skel_edt, im): """Create costmap to increase loss in boundary areas.""" points_with_vecs = im.copy() points_with_vecs[skel_edt > 0] = 0 add_in_thin = np.logical_and(skel_edt > 0, skel_edt < 3) points_with_vecs = np.logical_or(points_with_vecs, add_in_thin) sigma = np.asarray([2] * self.dim) / self.anisotropy sigma = np.maximum(sigma, np.ones(self.dim)) cmap = gaussian(points_with_vecs > 0, sigma=sigma) # emphasize boundary points cmap /= cmap.max() # emphasize object interior points cmap[im.squeeze() > 0] += 0.5 cmap += 0.5 # very emphasize object contact points cmap += self._get_object_contacts(im) return torch.from_numpy(cmap).unsqueeze(0)
[docs] def keep_largest_cc(self, img): regions = find_objects(img) new_im = np.zeros_like(img, dtype=img.dtype) for lab, coords in enumerate(regions, start=1): if lab == 0: continue labeled_crop, n_labels = label(img[coords] == lab) if n_labels > 1: largest_cc = np.argmax(np.bincount(labeled_crop.flat)[1:]) + 1 largest_cc = (labeled_crop == largest_cc) * lab else: largest_cc = (img[coords] == lab) * lab new_im[coords] += largest_cc return new_im
def __call__(self, image_dict): for key in self.label_keys: if key not in image_dict: if not self.allow_missing_keys: raise KeyError( f"Key {key} not found in data. Available keys are {image_dict.keys()}" ) continue im = image_dict.pop(key) im = im.as_tensor() if isinstance(im, MetaTensor) else im im = im.numpy().astype(int).squeeze() if self.keep_largest: im = self.keep_largest_cc(im) im, _, _ = relabel_sequential(im) skel = self.shrink(im) skel_edt = torch.from_numpy(edt.edt(skel > 0)).unsqueeze(0) skel_edt[skel_edt == 0] = -10 embed = self.embed_from_skel(skel, im.copy()) cmap = self._get_cmap(skel_edt.squeeze(), im) bound = torch.from_numpy(find_boundaries(im, mode="inner")).unsqueeze(0) semantic_seg = torch.from_numpy(im > 0).unsqueeze(0) image_dict[key] = torch.cat([skel_edt, semantic_seg, embed, bound, cmap]).float() return image_dict
[docs]class InstanceSegRandFlipd(RandomizableTransform): """Flipping Augmentation for InstanceSeg training. When flipping ground truths generated by `InstanceSegPreprocessD`, the sign of gradients have to be changed after flipping. """ def __init__( self, spatial_axis: int, label_keys: Union[str, Sequence[str]] = [], image_keys: Union[str, Sequence[str]] = [], prob: float = 0.5, dim: int = 3, allow_missing_keys: bool = False, ): """ Parameters -------------- spatial_axis:int axis to flip across label_keys:Union[str, Sequence[str]]=[] key or list of keys generated by InstanceSegPreprocessD to flip image_keys:Union[str, Sequence[str]]=[] key or list of keys NOT generated by InstanceSegPreprocessd to flip prob:float=0.1 probability of flipping dim:int=3 spatial dimensions of images allow_missing_keys:bool=False Whether to raise error if a provided key is missing """ super().__init__() self.image_keys = ( image_keys if isinstance(image_keys, (list, ListConfig)) else [image_keys] ) self.label_keys = ( label_keys if isinstance(label_keys, (list, ListConfig)) else [label_keys] ) self.dim = dim self.allow_missing_keys = allow_missing_keys self.flipper = Flip(spatial_axis) self.prob = prob self.spatial_axis = spatial_axis def _flip(self, img, is_label): img = self.flipper(img) if is_label: assert ( img.shape[0] == 4 + self.dim ), f"Expected generated InstanceSeg ground truth to have {4+self.dim} channels, got {img.shape[0]}" flipped_flows = img[2 : 2 + self.dim] flipped_flows[self.spatial_axis] *= -1 img[2 : 2 + self.dim] = flipped_flows return img def __call__(self, image_dict): do_flip = self.R.rand() < self.prob if do_flip: for key in self.label_keys + self.image_keys: if key in image_dict: image_dict[key] = self._flip(image_dict[key], key in self.label_keys) elif not self.allow_missing_keys: raise KeyError( f"Key {key} not found in data. Available keys are {image_dict.keys()}" ) return image_dict
[docs]class InstanceSegLoss: """Loss function for InstanceSeg.""" def __init__(self, dim: int = 3, weights: Optional[Dict[str, float]] = {}): """ Parameters -------------- dim:int=3 Spatial dimension of input images. weights:Optional[Dict[str, float]]={} Dictionary of weights for each loss component. """ self.dim = dim self.skeleton_loss = CMAP_loss(torch.nn.MSELoss(reduction="none")) self.vector_loss = CMAP_loss(torch.nn.MSELoss(reduction="none")) self.boundary_loss = CMAP_loss(torch.nn.BCEWithLogitsLoss(reduction="none")) self.semantic_loss = TverskyLoss(sigmoid=True) self.weights = weights def __call__(self, y_hat, y): """ Parameters -------------- y: ND-array, float y[:,0] skeleton y[:,1] semantic_segmentation y[:,2:2+self.dim] embedding y[:, -2] boundary segmentation y[:, -1] costmap for vector loss y_hat: ND-array, float y[:,0] skeleton y[:,1] semantic_segmentation y[:,2:2+self.dim embedding y[:, -1] boundary """ cmap = y[:, -1:] skeleton_loss = self.skeleton_loss(y_hat[:, :1], y[:, :1], cmap) * float( self.weights.get("skeleton", 1.0) ) semantic_loss = self.semantic_loss(y_hat[:, 1:2], y[:, 1:2]) * float( self.weights.get("semantic", 40.0) ) boundary_loss = self.boundary_loss(y_hat[:, -1:], y[:, -2:-1], cmap) * float( self.weights.get("boundary", 1.0) ) vector_loss = self.vector_loss(y_hat[:, 2:-1], y[:, 2:-2], cmap) * float( self.weights.get("vector", 10.0) ) return vector_loss + skeleton_loss + semantic_loss + boundary_loss
[docs]class InstanceSegCluster: """ Clustering for InstanceSeg - finds skeletons and assigns semantic points to skeleton based on spatial embedding and nearest neighbor distances. """ def __init__( self, dim: int = 3, anisotropy: float = 2.6, skel_threshold: float = 0, semantic_threshold: float = 0, min_size: int = 1000, distance_threshold: int = 100, progress: bool = True, ): self.dim = dim self.anisotropy = np.array([anisotropy if dim == 3 else 1] + [1] * (dim - 1)) self.skel_threshold = skel_threshold self.semantic_threshold = semantic_threshold self.min_size = min_size self.distance_threshold = distance_threshold self.progress = progress def _get_point_embeddings(self, object_points, skeleton_points): """ object_points: (N, dim) array of embedded points from semantic segmentation skeleton_points: (N, dim) array of points on skeleton boundary """ tree = KDTree(skeleton_points) dist, idx = tree.query(object_points) return dist, tree.data[idx].T.astype(int)
[docs] def kd_clustering(self, embeddings, skel): """assign embedded points to closest skeleton.""" skel = find_boundaries(skel, mode="inner") * skel # propagate labels to boundaries skel_points = np.stack(skel.nonzero()).T embed_points = np.stack(embeddings).T ( dist_to_closest_skel, closest_skel_point_to_embedding, ) = self._get_point_embeddings(embed_points, skel_points) embedding_labels = skel[tuple(closest_skel_point_to_embedding[:3])] # remove points too far from any skeleton embedding_labels[dist_to_closest_skel > self.distance_threshold] = 0 return embedding_labels
[docs] def remove_small_skeletons(self, skel): """remove small skeletons below self.min_size that are not touching the edge of the image.""" skel_removed = skel.copy() regions = find_objects(skel) for lab, coords in enumerate(regions, start=1): if coords is None: continue is_edge = np.any( [np.logical_or(s.start == 0, s.stop >= c) for s, c in zip(coords, skel.shape)] ) if not is_edge and np.sum(skel[coords]) < self.min_size: skel_removed[coords][skel[coords] == lab] = 0 return skel_removed
[docs] def cluster_object(self, semantic, skel, embedding): skel[semantic == 0] = -np.inf # create instances from skeletons, removing small, anomalous skeletons skel, _ = label(skel > self.skel_threshold) skel = self.remove_small_skeletons(skel) num_objects = len(np.unique(skel)) - 1 if num_objects == 0: # don't include objects corresponding to bad skeletons in final segmentation return np.zeros_like(semantic) elif num_objects == 1: # if only one skeleton, return largest connected component of semantic segmentation return semantic # z embeddings are anisotropic, have to adjust to coordinates in real space, not pixel space anisotropic_shape = np.array(semantic.shape) * self.anisotropy coordinates = np.stack( np.meshgrid( *[ np.linspace(0, anisotropic_shape[i] - 1, semantic.shape[i]) for i in range(self.dim) ], indexing="ij", ) ) embedding += coordinates semantic = np.logical_and(semantic, skel == 0) # find pixel coordinates pointed to by each z, y, x point within semantic segmentation and outside skeleton embeddings = [] for i in range(embedding.shape[0]): dim_embed = embedding[i][semantic] / self.anisotropy[i] dim_embed = np.clip(dim_embed, 0, semantic.shape[i] - 1).round().astype(int) embeddings.append(dim_embed) # assign each embedded point the label of the closest skeleton labeled_embed = self.kd_clustering(embeddings, skel) # propagate embedding label to semantic segmentation skel[semantic] = labeled_embed out, _, _ = relabel_sequential(skel) return out
def __call__(self, image): image = image.detach().half() naive_labeling, _ = label((image[1] > self.semantic_threshold).cpu()) skel = image[0].cpu().numpy() embedding = image[2 : 2 + self.dim].cpu().numpy() regions = enumerate(find_objects(naive_labeling), start=1) highest_cell_idx = 0 out_image = np.zeros_like(naive_labeling, dtype=np.uint16) for val, region in tqdm(regions) if self.progress else regions: region = pad_slice(region, 1, naive_labeling.shape) mask = self.cluster_object( (naive_labeling[region] == val).copy(), skel[region].copy(), embedding[(slice(None),) + region].copy(), ) mask = mask.astype(np.uint16) max_mask = np.max(mask) mask[mask > 0] += highest_cell_idx out_image[region] += mask highest_cell_idx += max_mask return out_image