Source code for cyto_dl.models.im2im.multi_task

import sys
import warnings
from pathlib import Path
from typing import Dict, List, Union

import torch
import torch.nn as nn
from monai.data.meta_tensor import MetaTensor
from monai.inferers import sliding_window_inference
from torchmetrics import MeanMetric

from cyto_dl.models.base_model import BaseModel

warnings.simplefilter("once", UserWarning)


[docs]class MultiTaskIm2Im(BaseModel): def __init__( self, *, backbone: nn.Module, task_heads: Dict, x_key: str, save_dir="./", save_images_every_n_epochs=1, inference_args: Dict = {}, inference_heads: Union[List, None] = None, compile=False, **base_kwargs, ): """ Parameters ---------- backbone: nn.Module backbone network, parameters are shared between task heads task_heads: Dict task-specific heads x_key: str key of input image in batch save_dir="./" directory to save images during training and validation save_images_every_n_epochs=1 Frequency to save out images during training inference_args: Dict = {} Arguments passed to monai's [sliding window inferer](https://docs.monai.io/en/stable/inferers.html#sliding-window-inference) inference_heads: Union[List, None] = None Optional list of heads to run during inference. Defaults to running all heads. compile: False Whether to compile the model using torch.compile **base_kwargs: Additional arguments passed to BaseModel """ _DEFAULT_METRICS = { "train/loss": MeanMetric(), "val/loss": MeanMetric(), "test/loss": MeanMetric(), } for head in task_heads.keys(): assert head not in ( "loss", "pred", "target", "input", ), "Task head name cannot be 'loss', 'pred', 'target', or 'input'" _DEFAULT_METRICS.update( { f"train/loss/{head}": MeanMetric(), f"val/loss/{head}": MeanMetric(), f"test/loss/{head}": MeanMetric(), } ) metrics = base_kwargs.pop("metrics", _DEFAULT_METRICS) super().__init__(metrics=metrics, **base_kwargs) self.automatic_optimization = True if compile is True and not sys.platform.startswith("win"): self.backbone = torch.compile(backbone) self.task_heads = torch.nn.ModuleDict( {k: torch.compile(v) for k, v in task_heads.items()} ) else: self.backbone = backbone self.task_heads = torch.nn.ModuleDict(task_heads) self.inference_heads = inference_heads or list(self.task_heads.keys()) for k, head in self.task_heads.items(): head.update_params({"head_name": k, "x_key": x_key, "save_dir": save_dir})
[docs] def configure_optimizers(self): opts = [] scheds = [] for key in ("generator", "discriminator"): if key in self.optimizer.keys(): if key == "generator": opt = self.optimizer[key]( filter( lambda p: p.requires_grad, list(self.backbone.parameters()) + list(self.task_heads.parameters()), ) ) elif key == "discriminator": opt = self.optimizer[key](self.discriminator.parameters()) scheduler = self.lr_scheduler[key](optimizer=opt) opts.append(opt) scheds.append(scheduler) return (opts, scheds)
def _train_forward(self, batch, stage, n_postprocess, run_heads): """during training we are only dealing with patches,so we can calculate per-patch loss, metrics, postprocessing etc.""" z = self.backbone(batch[self.hparams.x_key]) return { task: self.task_heads[task].run_head(z, batch, stage, n_postprocess) for task in run_heads }
[docs] def forward(self, x, run_heads): z = self.backbone(x) return {task: self.task_heads[task](z) for task in run_heads}
def _inference_forward(self, batch, stage, n_postprocess, run_heads): """during inference, we need to calculate per-fov loss/metrics/postprocessing. To avoid storing and passing to each head the intermediate results of the backbone, we need to run backbone + taskheads patch by patch, then do saving/postprocessing/etc on the entire fov. """ with torch.no_grad(): raw_pred_images = sliding_window_inference( inputs=batch[self.hparams.x_key], predictor=self.forward, run_heads=run_heads, **self.hparams.inference_args, ) return { head_name: self.task_heads[head_name].run_head( None, batch, stage, n_postprocess, run_forward=False, y_hat=raw_pred_images[head_name], ) for head_name in run_heads }
[docs] def run_forward(self, batch, stage, n_postprocess, run_heads): if stage in ("train", "val"): return self._train_forward(batch, stage, n_postprocess, run_heads) return self._inference_forward(batch, stage, n_postprocess, run_heads)
[docs] def get_n_postprocess_image(self, batch, batch_idx, stage): # save first batch every n epochs during train/val if ( stage in ("train", "val") and batch_idx == (self.current_epoch + 1) % self.hparams.save_images_every_n_epochs == 0 ): return 1 # postprocess all images in batch for predict/test elif stage in ("predict", "test"): return batch[self.hparams.x_key].shape[0] return 0
def _sum_losses(self, losses): losses["loss"] = torch.sum(torch.stack(list(losses.values()))) return losses def _get_unrun_heads(self, io_map): """returns heads that don't have outputs yet.""" updated_run_heads = [] # check that all output files exist for each head for head, head_io_map in io_map.items(): for fn in head_io_map["output"]: if not Path(fn).exists(): updated_run_heads.append(head) break return updated_run_heads def _combine_io_maps(self, io_maps): """aggregate io_maps from per-head to per-input image.""" io_map = {} # create input-> per head output mapping for head, head_io_map in io_maps.items(): for in_file, out_file in zip(head_io_map["input"], head_io_map["output"]): if in_file not in io_map: io_map[in_file] = {} io_map[in_file][head] = out_file return io_map def _get_run_heads(self, batch, stage, batch_idx): """Get heads that are either specified as inference heads and don't have outputs yet or all heads.""" run_heads = self.inference_heads if stage in ("train", "val", "test"): run_heads = [key for key in self.task_heads.keys() if key in batch] return run_heads, None filenames = batch[self.hparams.x_key].meta.get("filename_or_obj", None) if filenames is None: warnings.warn( 'Batch MetaTensors must have "filename_or_obj" to be saved out. Returning array prediction instead...', UserWarning, ) return run_heads, None # IO_map is only generated for prediction io_map = {h: self.task_heads[h].generate_io_map(filenames) for h in run_heads} # only run heads that don't have outputs yet for prediction run_heads = self._get_unrun_heads(io_map) io_map = self._combine_io_maps(io_map) return run_heads, io_map def _to_tensor(self, batch): """convert monai metatensors to tensors.""" for k, v in batch.items(): if isinstance(v, MetaTensor): batch[k] = v.as_tensor() return batch
[docs] def get_per_head(self, outs, key): return {head_name: head_result[key] for head_name, head_result in outs.items()}
[docs] def model_step(self, stage, batch, batch_idx): run_heads, _ = self._get_run_heads(batch, stage, batch_idx) n_postprocess = self.get_n_postprocess_image(batch, batch_idx, stage) batch = self._to_tensor(batch) outs = self.run_forward(batch, stage, n_postprocess, run_heads) # aggregate losses across heads results = self.get_per_head(outs, "loss") results = self._sum_losses(results) if n_postprocess > 0: # add postprocessed images to return dict for k in ("pred", "target", "input"): results[k] = self.get_per_head(outs, k) self.compute_metrics(results, None, None, stage) return results
[docs] def training_step(self, batch, batch_idx): return self.model_step("train", batch, batch_idx)
[docs] def validation_step(self, batch, batch_idx): return self.model_step("val", batch, batch_idx)
[docs] def test_step(self, batch, batch_idx): return self.model_step("test", batch, batch_idx)
[docs] def predict_step(self, batch, batch_idx): stage = "predict" run_heads, io_map = self._get_run_heads(batch, stage, batch_idx) outs = None if len(run_heads) > 0: n_postprocess = self.get_n_postprocess_image(batch, batch_idx, stage) batch = self._to_tensor(batch) outs = self.run_forward(batch, stage, n_postprocess, run_heads) return io_map, outs