Source code for cyto_dl.models.im2im.gan

import sys
from typing import Dict

import torch
import torch.nn as nn
from monai.inferers import sliding_window_inference
from torchmetrics import MeanMetric

from cyto_dl.models.im2im.multi_task import MultiTaskIm2Im

_DEFAULT_METRICS = {
    "train/loss/discriminator_loss": MeanMetric(),
    "val/loss/discriminator_loss": MeanMetric(),
    "test/loss/discriminator_loss": MeanMetric(),
    "train/loss/generator_loss": MeanMetric(),
    "val/loss/generator_loss": MeanMetric(),
    "test/loss/generator_loss": MeanMetric(),
    "train/loss": MeanMetric(),
    "val/loss": MeanMetric(),
    "test/loss": MeanMetric(),
}


[docs]class GAN(MultiTaskIm2Im): """Basic GAN model.""" def __init__( self, *, backbone: nn.Module, task_heads: Dict[str, nn.Module], discriminator: nn.Module, x_key: str, save_dir="./", save_images_every_n_epochs=1, automatic_optimization: bool = False, inference_args: Dict = {}, compile: False, **base_kwargs, ): """ Parameters ---------- backbone: nn.Module backbone network, parameters are shared between task heads task_heads: Dict task-specific heads discriminator discriminator network x_key: str key of input image in batch save_dir="./" directory to save images during training and validation save_images_every_n_epochs=1 Frequency to save out images during training inference_args: Dict = {} Arguments passed to monai's [sliding window inferer](https://docs.monai.io/en/stable/inferers.html#sliding-window-inference) compile: False Whether to compile the model using torch.compile **base_kwargs: Additional arguments passed to BaseModel """ metrics = base_kwargs.pop("metrics", _DEFAULT_METRICS) super().__init__( metrics=metrics, backbone=backbone, task_heads=task_heads, x_key=x_key, **base_kwargs ) self.automatic_optimization = False if compile is True and not sys.platform.startswith("win"): self.discriminator = torch.compile(discriminator) else: self.discriminator = discriminator assert len(self.task_heads.keys()) == 1, "Only single-head GANs are supported currently." self.inference_heads = list(self.task_heads.keys()) for k, head in self.task_heads.items(): head.update_params({"head_name": k, "x_key": x_key, "save_dir": save_dir})
[docs] def configure_optimizers(self): opts = [] scheds = [] for key in ("generator", "discriminator"): if key in self.optimizer.keys(): if key == "generator": opt = self.optimizer[key]( list(self.backbone.parameters()) + list(self.task_heads.parameters()) ) elif key == "discriminator": opt = self.optimizer[key](self.discriminator.parameters()) scheduler = self.lr_scheduler[key](optimizer=opt) opts.append(opt) scheds.append(scheduler) return (opts, scheds)
def _train_forward(self, batch, stage, save_image, run_heads): """during training we are only dealing with patches,so we can calculate per-patch loss, metrics, postprocessing etc.""" z = self.backbone(batch[self.hparams.x_key]) return { task: self.task_heads[task].run_head( z, batch, stage, save_image, discriminator=self.discriminator ) for task in run_heads } def _inference_forward(self, batch, stage, save_image, run_heads): """during inference, we need to calculate per-fov loss/metrics/postprocessing. To avoid storing and passing to each head the intermediate results of the backbone, we need to run backbone + taskheads patch by patch, then do saving/postprocessing/etc on the entire fov. """ with torch.no_grad(): raw_pred_images = sliding_window_inference( inputs=batch[self.hparams.x_key], predictor=self.forward, run_heads=run_heads, **self.hparams.inference_args, ) return { head_name: head.run_head( None, batch, stage, save_image, discriminator=self.discriminator if stage == "test" else None, run_forward=False, y_hat=raw_pred_images[head_name], ) for head_name, head in self.task_heads.items() } def _extract_loss(self, outs, loss_type): loss = { f"{head_name}_{loss_type}": head_result[loss_type] for head_name, head_result in outs.items() } return self._sum_losses(loss)
[docs] def model_step(self, stage, batch, batch_idx): run_heads, _ = self._get_run_heads(batch, stage, batch_idx) n_postprocess = self.get_n_postprocess_image(batch, batch_idx, stage) batch = self._to_tensor(batch) outs = self.run_forward(batch, stage, n_postprocess, run_heads) loss_D = self._extract_loss(outs, "loss_D") loss_G = self._extract_loss(outs, "loss_G") if stage == "train": g_opt, d_opt = self.optimizers() g_opt.zero_grad() self.manual_backward(loss_G["loss"]) g_opt.step() d_opt.zero_grad() self.manual_backward(loss_D["loss"]) d_opt.step() results = {f"discriminator_{key}": loss for key, loss in loss_D.items()} results.update({f"generator_{key}": loss for key, loss in loss_G.items()}) results["loss"] = results["generator_loss"] if n_postprocess > 0: # add postprocessed images to return dict for k in ("pred", "target", "input"): results[k] = self.get_per_head(outs, k) self.compute_metrics(results, None, None, stage) return results
[docs] def predict_step(self, batch, batch_idx): stage = "predict" run_heads, io_map = self._get_run_heads(batch, stage, batch_idx) outs = None if len(run_heads) > 0: n_postprocess = self.get_n_postprocess_image(batch, batch_idx, stage) batch = self._to_tensor(batch) outs = self.run_forward(batch, stage, n_postprocess, run_heads) return io_map, outs