Source code for cyto_dl.datamodules.multidim_image

from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import pandas as pd
import torch
from bioio import BioImage
from monai.data import DataLoader, Dataset, MetaTensor
from monai.transforms import Compose, ToTensor, apply_transform
from omegaconf import ListConfig


[docs]class MultiDimImageDataset(Dataset): """Dataset converting a `.csv` file listing multi dimensional (timelapse or multi-scene) files and some metadata into batches of single- scene, single-timepoint, single-channel images.""" def __init__( self, csv_path: Union[Path, str], img_path_column: str, channel_column: str, out_key: str, spatial_dims: int = 3, scene_column: str = "scene", time_start_column: str = "start", time_stop_column: str = "stop", time_step_column: str = "step", dict_meta: Optional[Dict] = None, transform: Optional[Callable] = None, dask_load: bool = True, ): """ Parameters ---------- csv_path: Union[Path, str] path to csv img_path_column: str column in `csv_path` that contains path to multi dimensional (timelapse or multi-scene) file channel_column:str Column in `csv_path` that contains which channel to extract from multi dimensional (timelapse or multi-scene) file. Should be an integer. out_key:str Key where single-scene/timepoint/channel is saved in output dictionary spatial_dims:int=3 Spatial dimension of output image. Must be 2 for YX or 3 for ZYX scene_column:str="scene", Column in `csv_path` that contains scenes to extract from multi-scene file. If not specified, all scenes will be extracted. If multiple scenes are specified, they should be separated by a comma (e.g. `scene1,scene2`) time_start_column:str="start" Column in `csv_path` specifying which timepoint in timelapse image to start extracting. If any of `start_column`, `stop_column`, or `step_column` are not specified, all timepoints are extracted. time_stop_column:str="stop" Column in `csv_path` specifying which timepoint in timelapse image to stop extracting. If any of `start_column`, `stop_column`, or `step_column` are not specified, all timepoints are extracted. time_step_column:str="step" Column in `csv_path` specifying step between timepoints. For example, values in this column should be `2` if every other timepoint should be run. If any of `start_column`, `stop_column`, or `step_column` are not specified, all timepoints are extracted. dict_meta: Optional[Dict] Dictionary version of CSV file. If not provided, CSV file is read from `csv_path`. transform: Optional[Callable] = None Callable to that accepts numpy array. For example, image normalization functions could be passed here. dask_load: bool = True Whether to use dask to load images. If False, full images are loaded into memory before extracting specified scenes/timepoints. """ super().__init__(None, transform) df = pd.read_csv(csv_path) if csv_path is not None else pd.DataFrame([dict_meta]) self.img_path_column = img_path_column self.channel_column = channel_column self.scene_column = scene_column self.time_start_column = time_start_column self.time_stop_column = time_stop_column self.time_step_column = time_step_column self.out_key = out_key if spatial_dims not in (2, 3): raise ValueError(f"`spatial_dims` must be 2 or 3, got {spatial_dims}") self.spatial_dims = spatial_dims self.dask_load = dask_load self.img_data = self.get_per_file_args(df) def _get_scenes(self, row, img): scenes = row.get(self.scene_column, -1) if scenes != -1: scenes = scenes.strip().split(",") for scene in scenes: if scene not in img.scenes: raise ValueError( f"For image {row[self.img_path_column]} unable to find scene `{scene}`, available scenes are {img.scenes}" ) else: scenes = img.scenes return scenes def _get_timepoints(self, row, img): start = row.get(self.time_start_column, 0) stop = row.get(self.time_stop_column, -1) step = row.get(self.time_step_column, 1) timepoints = range(start, stop + 1, step) if stop > 0 else range(img.dims.T) return list(timepoints)
[docs] def get_per_file_args(self, df): img_data = [] for row in df.itertuples(): row = row._asdict() img = BioImage(row[self.img_path_column]) scenes = self._get_scenes(row, img) timepoints = self._get_timepoints(row, img) for scene in scenes: for timepoint in timepoints: img_data.append( { "img": img, "dimension_order_out": "ZYX"[-self.spatial_dims :], "C": row[self.channel_column], "scene": scene, "T": timepoint, "original_path": row[self.img_path_column], } ) img_data.reverse() return img_data
def _metadata_to_str(self, metadata): return "_".join([] + [f"{k}={v}" for k, v in metadata.items()]) def _ensure_channel_first(self, img): while len(img.shape) < self.spatial_dims + 1: img = np.expand_dims(img, 0) return img
[docs] def create_metatensor(self, img, meta): if isinstance(img, np.ndarray): img = torch.from_numpy(img.astype(float)) if isinstance(img, MetaTensor): img.meta.update(meta) return img elif isinstance(img, torch.Tensor): return MetaTensor( img, meta=meta, ) raise ValueError(f"Expected img to be MetaTensor or torch.Tensor, got {type(img)}")
[docs] def is_batch(self, x): return isinstance(x, list) or len(x.shape) == self.spatial_dims + 2
def _transform(self, index: int): img_data = self.img_data.pop() img = img_data.pop("img") original_path = img_data.pop("original_path") scene = img_data.pop("scene") img.set_scene(scene) if self.dask_load: data_i = img.get_image_dask_data(**img_data).compute() else: data_i = img.get_image_data(**img_data) # add scene and path information back to metadata img_data["scene"] = scene img_data["original_path"] = original_path data_i = self._ensure_channel_first(data_i) data_i = self.create_metatensor(data_i, img_data) output_img = ( apply_transform(self.transform, data_i) if self.transform is not None else data_i ) # some monai transforms return a batch. When collated, the batch dimension gets moved to the channel dimension if self.is_batch(output_img): return [{self.out_key: img} for img in output_img] return {self.out_key: output_img} def __len__(self): return len(self.img_data)
[docs]def make_multidim_image_dataloader( csv_path: Optional[Union[Path, str]] = None, img_path_column: str = "path", channel_column: str = "channel", out_key: str = "image", spatial_dims: int = 3, scene_column: str = "scene", time_start_column: str = "start", time_stop_column: str = "stop", time_step_column: str = "step", dict_meta: Optional[Dict] = None, transforms: Optional[Union[List[Callable], Tuple[Callable], ListConfig]] = None, **dataloader_kwargs, ) -> DataLoader: """Function to create a MultiDimImage DataLoader. Currently, this dataset is only useful during prediction and cannot be used for training or testing. Parameters ---------- csv_path: Optional[Union[Path, str]] path to csv img_path_column: str column in `csv_path` that contains path to multi dimensional (timelapse or multi-scene) file channel_column: str Column in `csv_path` that contains which channel to extract from multi dim image file. Should be an integer. out_key: str Key where single-scene/timepoint/channel is saved in output dictionary spatial_dims: int Spatial dimension of output image. Must be 2 for YX or 3 for ZYX scene_column: str Column in `csv_path` that contains scenes to extract from multiscene file. If not specified, all scenes will be extracted. If multiple scenes are specified, they should be separated by a comma (e.g. `scene1,scene2`) time_start_column: str Column in `csv_path` specifying which timepoint in timelapse image to start extracting. If any of `start_column`, `stop_column`, or `step_column` are not specified, all timepoints are extracted. time_stop_column: str Column in `csv_path` specifying which timepoint in timelapse image to stop extracting. If any of `start_column`, `stop_column`, or `step_column` are not specified, all timepoints are extracted. time_step_column: str Column in `csv_path` specifying step between timepoints. For example, values in this column should be `2` if every other timepoint should be run. If any of `start_column`, `stop_column`, or `step_column` are not specified, all timepoints are extracted. dict_meta: Optional[Dict] Dictionary version of CSV file. If not provided, CSV file is read from `csv_path`. transforms: Optional[Union[List[Callable], Tuple[Callable], ListConfig]] Callable or list of callables that accept numpy array. For example, image normalization functions could be passed here. Dataloading is already handled by the dataset. Returns ------- DataLoader The DataLoader object for the MultiDimIMage dataset. """ if isinstance(transforms, (list, tuple, ListConfig)): transforms = Compose(transforms) dataset = MultiDimImageDataset( csv_path, img_path_column, channel_column, out_key, spatial_dims, scene_column=scene_column, time_start_column=time_start_column, time_stop_column=time_stop_column, time_step_column=time_step_column, dict_meta=dict_meta, transform=transforms, ) # currently only supports a 0/1 workers num_workers = min(dataloader_kwargs.pop("num_workers"), 1) return DataLoader(dataset, num_workers=num_workers, **dataloader_kwargs)