fnet.data package¶
Submodules¶
fnet.data.bufferedpatchdataset module¶
-
class
fnet.data.bufferedpatchdataset.
BufferedPatchDataset
(dataset: collections.abc.Sequence, patch_shape: Sequence[int] = (32, 64, 64), buffer_size: int = 1, buffer_switch_interval: int = -1, shuffle_images: bool = True)[source]¶ Bases:
object
Provides patches from items of a dataset.
- Parameters
dataset – Dataset object.
patch_shape – Shape of patch to be extracted from dataset items.
buffer_size – Size of buffer.
buffer_switch_interval – Number of patches provided between buffer item exchanges. Set to -1 to disable exchanges.
shuffle_images – Set to randomize order of dataset item insertion into buffer.
-
get_batch
(batch_size: int) → Sequence[torch.Tensor][source]¶ Returns a batch of patches.
- Parameters
batch_size – Number of patches in batch.
- Returns
Batch of patches.
- Return type
Sequence[torch.Tensor]
-
get_buffer_history
() → List[int][source]¶ Returns a list of indices of dataset elements inserted into the buffer.
- Returns
Indices of dataset elements.
- Return type
List[int]
-
get_random_patch
() → List[Union[numpy.ndarray, torch.Tensor]][source]¶ Samples random patch from an item in the buffer.
Let nd be the number of dimensions of the patch. If the item has more dimensions than the patch, then sampling will be from the last nd dimensions of the item.
- Returns
Random patch sampled from a dataset item.
- Return type
List[ArrayLike]
fnet.data.czidataset module¶
fnet.data.czireader module¶
fnet.data.dummydataset module¶
fnet.data.fnetdataset module¶
-
class
fnet.data.fnetdataset.
FnetDataset
(dataframe: Optional[pandas.core.frame.DataFrame] = None, path_csv: Optional[str] = None, transform_signal: Optional[list] = None, transform_target: Optional[list] = None)[source]¶ Bases:
torch.utils.data.dataset.Dataset
Abstract class for fnet datasets.
- Parameters
dataframe – DataFrame where rows are dataset elements. Overrides path_csv.
path_csv – Path to csv from which to create DataFrame.
transform_signal – List of transforms to apply to signal image.
transform_target – List of transforms to apply to target image.
-
get_information
(index) → Union[dict, str][source]¶ Returns information to identify dataset element specified by index.
-
property
metadata
¶ Returns metadata about the dataset.
fnet.data.multichtiffdataset module¶
-
class
fnet.data.multichtiffdataset.
MultiChTiffDataset
(dataframe: pandas.core.frame.DataFrame = None, path_csv: str = None, transform_signal=None, transform_target=None)[source]¶ Bases:
fnet.data.fnetdataset.FnetDataset
Dataset for multi-channel tiff files.
fnet.data.tiffdataset module¶
-
class
fnet.data.tiffdataset.
TiffDataset
(col_index: Optional[str] = None, col_signal: str = 'path_signal', col_target: str = 'path_target', col_weight_map: str = 'path_weight_map', augment: bool = False, **kwargs)[source]¶ Bases:
fnet.data.fnetdataset.FnetDataset
Dataset where each row is a signal-target pairing from TIFF files.
- Dataset items will be 2-item or 3-item tuples:
(signal image, target image) or (signal image, target image, cost map)
- Parameters
augment – Set to augment dataset with flips about the x and/or y axis.
Module contents¶
-
class
fnet.data.
BufferedPatchDataset
(dataset: collections.abc.Sequence, patch_shape: Sequence[int] = (32, 64, 64), buffer_size: int = 1, buffer_switch_interval: int = -1, shuffle_images: bool = True)[source]¶ Bases:
object
Provides patches from items of a dataset.
- Parameters
dataset – Dataset object.
patch_shape – Shape of patch to be extracted from dataset items.
buffer_size – Size of buffer.
buffer_switch_interval – Number of patches provided between buffer item exchanges. Set to -1 to disable exchanges.
shuffle_images – Set to randomize order of dataset item insertion into buffer.
-
get_batch
(batch_size: int) → Sequence[torch.Tensor][source]¶ Returns a batch of patches.
- Parameters
batch_size – Number of patches in batch.
- Returns
Batch of patches.
- Return type
Sequence[torch.Tensor]
-
get_buffer_history
() → List[int][source]¶ Returns a list of indices of dataset elements inserted into the buffer.
- Returns
Indices of dataset elements.
- Return type
List[int]
-
get_random_patch
() → List[Union[numpy.ndarray, torch.Tensor]][source]¶ Samples random patch from an item in the buffer.
Let nd be the number of dimensions of the patch. If the item has more dimensions than the patch, then sampling will be from the last nd dimensions of the item.
- Returns
Random patch sampled from a dataset item.
- Return type
List[ArrayLike]
-
class
fnet.data.
FnetDataset
(dataframe: Optional[pandas.core.frame.DataFrame] = None, path_csv: Optional[str] = None, transform_signal: Optional[list] = None, transform_target: Optional[list] = None)[source]¶ Bases:
torch.utils.data.dataset.Dataset
Abstract class for fnet datasets.
- Parameters
dataframe – DataFrame where rows are dataset elements. Overrides path_csv.
path_csv – Path to csv from which to create DataFrame.
transform_signal – List of transforms to apply to signal image.
transform_target – List of transforms to apply to target image.
-
get_information
(index) → Union[dict, str][source]¶ Returns information to identify dataset element specified by index.
-
property
metadata
¶ Returns metadata about the dataset.
-
class
fnet.data.
TiffDataset
(col_index: Optional[str] = None, col_signal: str = 'path_signal', col_target: str = 'path_target', col_weight_map: str = 'path_weight_map', augment: bool = False, **kwargs)[source]¶ Bases:
fnet.data.fnetdataset.FnetDataset
Dataset where each row is a signal-target pairing from TIFF files.
- Dataset items will be 2-item or 3-item tuples:
(signal image, target image) or (signal image, target image, cost map)
- Parameters
augment – Set to augment dataset with flips about the x and/or y axis.
-
class
fnet.data.
MultiChTiffDataset
(dataframe: pandas.core.frame.DataFrame = None, path_csv: str = None, transform_signal=None, transform_target=None)[source]¶ Bases:
fnet.data.fnetdataset.FnetDataset
Dataset for multi-channel tiff files.