Source code for fnet.data.dummydataset

import os

import numpy as np
import pandas as pd
import tifffile
import torch

from fnet.data import TiffDataset
from fnet.utils.general_utils import add_augmentations


[docs]def DummyFnetDataset(train: bool = False) -> TiffDataset: """Returns a dummy Fnetdataset.""" df = pd.DataFrame( { "path_signal": [os.path.join("data", "EM_low.tif")], "path_target": [os.path.join("data", "MBP_low.tif")], } ).rename_axis("arbitrary") if not train: df = add_augmentations(df) return TiffDataset(dataframe=df)
class _CustomDataset: """Custom, non-FnetDataset.""" def __init__(self, df: pd.DataFrame): self._df = df def __len__(self): return len(self._df) def __getitem__(self, idx): loc = self._df.index[idx] sig = torch.from_numpy( tifffile.imread(self._df.loc[loc, "path_signal"])[np.newaxis,] ) tar = torch.from_numpy( tifffile.imread(self._df.loc[loc, "path_target"])[np.newaxis,] ) return (sig, tar)
[docs]def DummyCustomFnetDataset(train: bool = False) -> TiffDataset: """Returns a dummy custom dataset.""" df = pd.DataFrame( { "path_signal": [os.path.join("data", "EM_low.tif")], "path_target": [os.path.join("data", "MBP_low.tif")], } ) if not train: df = add_augmentations(df) return _CustomDataset(df)