fnet.cli package

Submodules

fnet.cli.init module

fnet.cli.init.add_parser_arguments(parser: argparse.ArgumentParser) → None[source]

Add init script arguments to parser.

fnet.cli.init.main(args: Optional[argparse.Namespace] = None) → None[source]

Install default training options and example model training/prediction scripts into current directory.

fnet.cli.init.save_default_predict_options(path_save: pathlib.Path) → None[source]

Save default prediction options json.

Parameters

path_save – Save path for default prediction options json.

fnet.cli.init.save_default_train_options(path_save: pathlib.Path) → None[source]

Save default training options json.

Parameters

path_save – Save path for default training options json.

fnet.cli.init.save_example_scripts(path_save_dir: str) → None[source]

Save example training and prediction scripts.

Parameters

path_save_dir – Directory in which to save scripts.

fnet.cli.init.save_options_json(path_save: pathlib.Path, options: Dict) → None[source]

Saves options dictionary as a json.

Parameters
  • path_save – JSON save path.

  • options – Options dictionary.

Returns

Return type

None

fnet.cli.main module

Module for command-line ‘fnet’ command.

fnet.cli.main.main() → None[source]

Main function for command-line ‘fnet’ command.

fnet.cli.predict module

Generates predictions from a model.

fnet.cli.predict.add_parser_arguments(parser) → None[source]

Add training script arguments to parser.

fnet.cli.predict.get_dataset(args: argparse.Namespace) → torch.utils.data.dataset.Dataset[source]

Returns dataset.

Returns

Dataset object.

Return type

torch.utils.data.Dataset

fnet.cli.predict.get_indices(args: argparse.Namespace, dataset: Any) → List[int][source]

Returns indices of dataset items on which to perform predictions.

fnet.cli.predict.item_from_dataset(dataset: Any, idx: int) → Tuple[torch.Tensor, Optional[torch.Tensor]][source]

Returns signal-target image pair from dataset.

If the dataset is a FnetDataset, it will be indexed using ‘loc’-style indexing.

Parameters
  • dataset – Object with __getitem__ implemented.

  • idx – Index of data to be retrieved from dataset.

Returns

Signal-target data pair. Target can be None if dataset does not return a target for the given index.

Return type

Tuple[torch.Tensor, Optional[torch.Tensor]]

fnet.cli.predict.load_from_json(args: argparse.Namespace) → None[source]

Loads arguments from if a json is specified.

fnet.cli.predict.main(args: Optional[argparse.Namespace] = None) → None[source]

Predicts using model.

fnet.cli.predict.parse_model(model_str: str) → Dict[source]

Parse model definition string into dictionary.

fnet.cli.predict.save_args_as_json(path_save_dir: str, args: argparse.Namespace) → None[source]

Saves script arguments as json in save directory.

A json is saved only if the “–json” option was not specified.

By default, this function tries to save arguments as predict_options.json within the save directory. If that file already exists, appends a digit to uniquify the save path.

Parameters
  • path_save_dir – Save directory

  • args – Script arguments.

fnet.cli.predict.save_predictions_csv(path_csv: pathlib.Path, pred_records: List[Dict], dataset: Any) → None[source]

Saves csv with metadata of predictions.

Parameters
  • path_csv – CSV save path.

  • pred_records – List of metadata for each prediction.

  • dataset – Dataset from where signal-target pairs were retrieved.

fnet.cli.predict.save_tif(fname: str, ar: numpy.ndarray, path_root: str) → str[source]

Saves a tif and returns tif save path relative to root save directory.

Image will be stored at: ‘path_root/tifs/fname’

Parameters
  • fname – Basename of save path.

  • ar – Array to be saved as tif.

  • path_root – Root directory of save path.

Returns

Save path relative to root directory.

Return type

str

fnet.cli.train_model module

Trains a model.

fnet.cli.train_model.add_parser_arguments(parser) → None[source]

Add training script arguments to parser.

fnet.cli.train_model.get_bpds_train(args: argparse.Namespace) → fnet.data.bufferedpatchdataset.BufferedPatchDataset[source]

Creates data provider for training.

fnet.cli.train_model.get_bpds_val(args: argparse.Namespace) → Optional[fnet.data.bufferedpatchdataset.BufferedPatchDataset][source]

Creates data provider for validation.

fnet.cli.train_model.init_cuda(gpu: int) → None[source]

Initialize Pytorch CUDA state.

fnet.cli.train_model.log_training_options(options: Dict) → None[source]

Logs training options.

fnet.cli.train_model.main(args: Optional[argparse.Namespace] = None)[source]

Trains a model.

fnet.cli.train_model.set_seeds(seed: Optional[int]) → None[source]

Sets random seeds

fnet.cli.train_model.train_model(batch_size: int = 28, bpds_kwargs: Optional[Dict] = None, dataset_train: str = 'fnet.data.TiffDataset', dataset_train_kwargs: Optional[Dict] = None, dataset_val: Optional[str] = None, dataset_val_kwargs: Optional[Dict] = None, fnet_model_class: str = 'fnet.fnet_model.Model', fnet_model_kwargs: Optional[Dict] = None, interval_checkpoint: int = 50000, interval_save: int = 1000, iter_checkpoint: Optional[List] = None, n_iter: int = 250000, path_save_dir: str = 'models/some_model', seed: Optional[int] = None, json: Optional[str] = None, gpu_ids: Optional[List[int]] = None)[source]

Python API for training.

Module contents